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Abstract

A weighed-least mean square algorithm is used to compute the damping ratios of the linearly stable combustion

oscillations, which occur prior to the fully developed nonlinear oscillating stage of combustion instability. The

computation of damping ratios is based on the model structure of linear second-order oscillators and the pressure

spectrum. Pressure obtained from two experiments on a gas turbine combustion simulator is analyzed. In both cases, the

damping ratio drops to the global minimum before combustion oscillations develop into the large-amplitude limit-cycle

oscillating stage.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Modern gas turbines are typically designed to operate in lean premixed or partially premixed mode [1]. Due
to equivalence ratio (f) variations and insufficient acoustic damping, combustion instability has become a
major technical challenge for dry-low-emission gas turbines. Accurate prediction of the onset and the limiting
amplitude of combustion instability is challenging because of the complexities involved in flame/vortex/
acoustics interactions, air/fuel mixing, finite chemical kinetics, and the complicated engine geometries.
However, for gas turbine operators, even a rough estimation of the safety margin to combustion instability is
highly desirable. Towards this goal, Lieuwen [2] has developed a low-order model and a correlation-function-
based procedure to ascertain the safety margin to combustion instability using the dynamic pressure data.

This paper computes the damping ratios of the excited acoustic modes using a weighted-least mean square
(lms) algorithm. The linearly stable combustion oscillations, which occur prior to the fully developed
nonlinear oscillating stage of combustion instability, is modeled as a set of linear, ‘‘closed-loop’’, second-order
oscillators, which are forced by the broadband background heat release rate oscillations. Different from
Lieuwen’s approach, the present method is formulated in the frequency domain, and is applicable to multiple
excited modes with unknown frequencies. It is found that the damping ratio drops to the global minimum
before the occurrence of combustion instability.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

ei the scaled broadband background heat
release rate oscillations

f ið. . .Þ the deterministic forcing applied to the
ith acoustic mode

Fi the ith frequency point at which the
pressure amplitude is computed, Hz

J the number of frequency points used to
compute the damping ratios

N the sample length
P0 the mean pressure, Pa
p0 acoustic pressure, Pa
p̂i;jð. . .Þ pressure amplitude, Pa

s the Laplace symbol
s̄ the scaled Laplace symbol, s̄ ¼ s=oi

X
*

the space vector, m

W the weight matrix
W̄ iðs̄Þ the scaled transfer function
rms root mean square
lms least mean square
f the equivalence ratio
Zi the mode coefficient of the ith acoustic

mode
oi the ‘‘closed-loop’’ resonant frequency of

the ith acoustic mode, rad/s
Bi the ‘‘closed-loop’’ damping ratio of the

ith acoustic mode
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2. Methodology

2.1. Low-order modeling of linearly stable combustion oscillations prior to the onset of combustion instability

Lieuwen [2] has developed a low-order model for analyzing the onset of combustion instability, which is
used as a starting point of the present paper. Essentially Lieuwen’s model is a linearized version of the
nonlinear models developed by Zinn and Culick in the 1970s [3,4] and [2–4]. By Galerkin projection, pressure
oscillations within a combustor can be formulated as a set of second-order, coupled, nonlinear oscillators,

p0ðX
*
; tÞ ¼ p0

X1
i¼1

ZiðtÞcið
~X Þ. (1)

d2Zi

dt2
þ 2~Bi ~oi

dZi

dt
þ ~o2

i Zi ¼ f i Zj ;
dZj

dt
;
dZj t� tð Þ

dt
; . . .

� �
þ ~ei i; j ¼ 1; . . . ;1. (2)

where ci, Zi, and ~Bi denote the mode shape, the mode coefficient, and the damping ratio of the ith acoustic
mode, respectively. ~eiðtÞ refers to the broadband background heat release rate oscillations, which will be
explained later. The term of dZj(t�t)/dt accounts for the effects of the time delay (t) and equivalence ratio
variations on combustion oscillations, which has not been explicitly included in Refs. [2–4]. The heat release
response to flow and acoustic disturbances may involve multiple time delays, and the time delays may also
appear in the form of Zj(t�t). Without loss of generality, we only consider the velocity-coupling mechanism,
i.e. the term of dZj(t�t)/dt. If the term of Zj(t�t) is included in f ið. . .Þ, similar analysis can be applied. Since the
present paper is mainly concerned with the linearly stable small-amplitude combustion oscillations, f ið. . .Þ is
linearized into functions of Zj, dZj/dt, and dZj(t�t)/dt [2]. This results in the following equations:

d2Zi

dt2
þ 2B̂iôi

dZi

dt
þ ô2

i Zi ¼ ~ei þ �i _Ziðt� tÞ i ¼ 1; . . . ;1. (3)

Note that �i ¼ qf i=q_Ziðt� tÞ. In Eq. (3), the possible linear coupling between acoustic modes is neglected.
We first consider a small time delay that allows the following approximation to hold:

_Ziðt� tÞ � _ZiðtÞ � €ZiðtÞt. (4)

By plugging Eq. (4) into Eq. (3), one gets

d2Zi

dt2
þ 2Bioi

dZi

dt
þ o2

i Zi ¼ ei i ¼ 1; . . . ;1. (5)
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Here 2Bioi ¼ ð2B̂iôi � �iÞ=ð1þ �itÞ, o2
i ¼ ô2

i =ð1þ �itÞ, and ei ¼ ~ei=ð1þ �itÞ. One can infer from Eq. (5)
that, for the time delay satisfying Eq. (4), an increase in t decreases the damping ratio. Note that the
approximation of Eq. (4) is not applicable for large time delays, say up to several pressure cycles. To simplify
the analysis, we assume that the pressure oscillating amplitude and frequency change slowly, which is usually a
reasonable assumption for a linear oscillator with a very small damping ratio. For certain time delays,
such as t̂ ¼ ð2pnÞ=oi ðn ¼ 1; 2; . . .Þ, one can approximate that _Ziðt� t̂Þ � _ZiðtÞ, which allows Eq. (3) to be
written as

d2Zi

dt2
þ ð2B̂iôi � �iÞ

dZi

dt
þ ô2

i Zi ¼ ~ei i ¼ 1; . . . ;1. (6)

Obviously the damping ratio decreases for �i40 and increases for �io0. On the contrary, in the case of
t̂ ¼ ð2pðn� 0:5ÞÞ=oi ðn ¼ 1; 2; . . .Þ, the damping ratio increases for �i40 and decreases for �io0. Stability
analysis for t with a general value is not very straightforward. Here we simply assume that the closed-loop
damping ratio Bi has incorporated the effects of the time delay.
~eiðtÞ in Eq. (3) is interpreted as the broadband background heat release oscillations caused by the

wideband turbulence. It is worthwhile to point out that the deterministic heat release rate oscillations
causing flame/acoustics/vortex interactions have been assimilated into the stiff and damping terms
in Eq. (5), so ~eiðtÞ only contains the background heat release rate oscillations. Since the hydro-
dynamic instability is amplified over much wider frequency ranges than the acoustic modes [5,6],
~eiðtÞ is assumed to have constant amplitude within a small region around the acoustic resonant
frequency.
2.2. Determination of the damping ratios

Taking Laplace transformation of Eq. (5), one gets

W iðsÞ ¼
ZiðsÞ

EiðsÞ
¼

1

s2 þ 2Bioisþ o2
i

. (7)

Since eiðtÞ has constant amplitude within a small region around the resonant frequency, the pressure amplitude
around oi can be expressed as

P̂i;jðōi;jÞ ¼ bi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ō2

i;jÞ
2
þ 4B2i ō

2
i;j

q
ðP̂i;j ¼ p0Zi;jo2

i ; bi ¼ p0EiðsÞ; j ¼ 1; 2; . . . ; JÞ. (8)

Here ōi;j refers to the normalized frequency, ōi;j ¼ 2pFj=oi. Fj(j ¼ 1,2,y, J) denotes the frequency points
nearby the resonant frequency oi. bi can be perceived as the normalized amplitude of the background heat
release rate oscillations. Theoretically, for each acoustic resonant mode, Bi and bi can be uniquely determined
from two frequency points nearby the resonant frequency in the pressure spectrum. However, the pressure
spectrum usually exhibits non-physical irregular peaks around the resonant frequencies. For the accuracy to
be improved, a weighted-lms algorithm is used in this paper.

Assume that J points nearby the resonant frequency oi are used for damping ratio computations. For each
frequency point, one can write down

b2i � 4B2i ō
2
i;j P̂

2

i;j ¼ ð1� ō2
i;jÞ

2P̂
2

i;j ðj ¼ 1; 2; . . . ; JÞ. (9)

Here we suggest J410, so the problem is overly determined. We use a weighted-lms algorithm to compute the
damping ratio

b2i
B2i

 !
¼ ðCTWCÞ�1CTWB. (10)
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Here,

C ¼

1 �4ō2
i;1

1 �4ō2
i;2

. . . . . .

1 �4ō2
i;J

0
BBBB@

1
CCCCA and B ¼

ð1� ō2
i;1Þ

2P̂
2

i;1

ð1� ō2
i;2Þ

2P̂
2

i;2

. . .

ð1� ō2
i;J Þ

2P̂
2

i;J

0
BBBBB@

1
CCCCCA.

W is the diagonal weight matrix. The weighted-lms algorithm requires the pressure spectrum. The fast Fourier
transform (FFT) algorithm is typically used in offline signal processing to calculate the discrete Fourier
transform (DFT). The authors have found difficulties in using this approach for real-time high-accuracy
computation, and have developed a modified algorithm for calculating the DFT. Details of this algorithm can
be found in Ref. [7].

In the present paper, damping ratio computations are formulated in the frequency domain, while Lieuwen’s
method is formulated in the time domain. Essentially these two approaches are equivalent. The frequency-
domain analysis allows the excited acoustic modes to separate in the pressure spectrum, which is advantageous
in the case of multiple excited modes with unknown and time-varying frequencies.

3. Results

Pressure measured from a partially premixed, turpentine-fueled, atmospheric gas turbine combustor is
analyzed here. The combustion rig is described in Ref. [8]. The unstable acoustic mode roughly corresponds to
the quarter wave mode of the combustion chamber, with a pressure anti-node nearby the dump plane. For the
first experiment, combustion occurs in a 0.45-m-long combustion chamber with the fuel split ratio of 0.8, the
preheat temperature of 473K, and the air mass flow rate of 55.6 g/s. The fuel split ratio refers to the ratio of
the main fuel flow rate to the total one. Pressure is measured at the chamber exit, 0.2m away from its center,
using a K&J microphone with a sensitivity of 10mV/Pa. For the second experiment, combustion occurs in a
0.66-m-long combustion chamber with the fuel split ratio of 0, the preheat temperature of 373K, and the air
mass flow rate of 55.6 g/s. Pressure is measured at 0.08m above the dump plane, using a Kistler pressure
transducer with a sensitivity of 10 kPa/V. The first experiment shows combustion instability preceding the lean
blowout, with the second one well above the lean blowout. In both experiments, the sampling frequency is
5 kHz, and the sample length is 10,000. The frequency interval for pressure spectrum estimation is 5Hz.

Fig. 1 compares two pressure spectra, with one computed using the procedures in Ref. [7] and the other
using the weighted-lms algorithm. The original pressure spectrum exhibits multiple irregular peaks around the
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Fig. 1. The original pressure spectrum and the curve-fitted one at f ¼ 0:62 during the first experiment. J Curve-fitted spectrum;

K original spectrum.
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Fig. 2. (a) Pressure rms for the first experiment. (b) Damping ratios for the first experiment.
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Fig. 3. (a) Pressure rms for the second experiment. (b) Damping ratios for the second experiment.

T. Yi, E.J. Gutmark / Journal of Sound and Vibration 310 (2008) 442–447446
resonant frequency, which is an intrinsic feature of DFT and FFT. The curve-fitted spectrum is much
smoother than the original one, and has the same structure as a second-order linear oscillator. Fig. 2 shows the
pressure root mean square (rms) and the damping ratios for the first experiment. Pressure rms is computed
from the filtered pressure using a fourth-order Butterworth bandpass filter within [350–450] Hz. One can see
that when f is reduced from 0.67 to 0.53, Bi decreases more than three times, while the pressure rms increases
less than 10%. This suggests that the damping ratio is a sensitive index for predicting the safety margin to
combustion instability. Note that the procedures described in this paper may not be applied for fo0:53 where
pressure oscillations are pretty strong. Fig. 3 shows the pressure rms and the damping ratios for the second
experiment. Pressure rms is computed from the filtered pressure using a fourth-order Butterworth bandpass
filter within [220–300] Hz. By increasing f from 0.44 to 0.48, Bi decreases more than eight times while the
pressure rms increases about six times. Again the procedures described in this paper may not be valid for
f40:48 where the pressure oscillating intensity is quite strong.

The accuracy of damping ratio computations is affected by the weight matrix W, the number of frequency
points used for curve fitting, and the pressure spectrum. In the above computations, 19 frequency points
around the resonant frequency is used for curve fitting, with the diagonal elements of the weight matrix as
½1; 1; 1; 1; 1; 2; 2; 5; 20; 100; 20; 5; 2; 2; 1; 1; 1; 1; 1�. Larger weights are imposed for frequencies points nearby the
resonant frequency because the dominant mode generates non-physical peaks at other frequencies. It is found
that a smaller number of frequency points than 19, say 11, can also generate good results. The accuracy of the
pressure spectrum can be significantly improved by increasing the sample length. For the procedures described
in Ref. [8], the computational complexity within each sample interval is fixed. This allows the pressure
spectrum to be accurately determined without sacrificing the real-time performance.
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Note that, in the above two experiments, combustion instability is approached by varying the equivalence
ratio. Onset of combustion instability may also occur with variations in several other parameters, such as the
preheat temperature, the nozzle inlet velocity, or the combustor length. The underlying mechanism responsible
for the onset of combustion instability may be different with different control parameters. However, no matter
what the control parameter is, the onset of combustion instability is associated with the reduction in the
damping ratio.

4. Conclusion

The present paper is concerned with the linearly stable combustion oscillations, which occur prior to the
fully developed nonlinear oscillating stage of combustion instability. Stable combustion oscillations are
modeled as a set of linear, second-order, closed-loop oscillators, with the broadband background heat release
rate oscillations as the input signal. The deterministic heat release oscillations caused by flame/acoustics/
vortex interactions have been assimilated into the stiff and damping terms of the low-order models. The
damping ratios are determined from the pressure spectrum using a weighted-lms algorithm. Pressure measured
from two experiments on a gas turbine combustion simulator is analyzed. It is found that the damping ratio
drops to the global minimum before combustion oscillations develop into the nonlinear limit-cycle oscillating
stage. The trend of damping ratio variations is consistent with the observations made by Lieuwen in Ref. [2].
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